Accomplishments in the Trident Laser Facility

Trident has been an extremely productive laser facility, despite its modest size and
operating cost in the firmament of high-energy, high-power laser facilities worldwide. More
than 150 peer-reviewed journal articles (in 39 different journals) have been published
using Trident experimental data, many in high-impact journals such as Nature, Nature
Physics, Nature Communications, and Physical Review Letters. More than 230 oral
presentations involving research at Trident have been presented at national and
international conferences. Trident publications have over 5000 citations in the literature
with an h-index of 38. At least 23 Los Alamos postdoctoral researchers have worked on
Trident. In the period since its inception in 1992-2007, despite not issuing formal proposal
calls for access nor functioning explicitly as a user facility until later, Trident had 170
unique users from more than 30 unique institutions, such as Los Alamos, Lawrence
Livermore, and Sandia national laboratories, various University of California campuses,
General Atomic, Imperial College, and Ecole Polytechnique. To reinforce its role as an
important Los Alamos point of connection to the external research community, at least 20
PhD students did a significant fraction of their thesis work on Trident (see Appendix
below). Such PhD students include Mike Dunne (Imperial College, 1995) - now director of
LCLS and professor at Stanford; David Hoarty (IC, 1997) - scientist at Atomic Weapons
Establishment, UK; Dustin Froula (UC Davis, 2002) - Plasma and Ultrafast Physics group
leader at the Laboratory for Laser Energetics and assistant professor at the Physics and
Astronomy Department at the University of Rochester; Tom Tierney (UC Irvine, 2002) -
scientist at Los Alamos; Eric Loomis (Arizona State U., 2005) - scientist at Los Alamos; and
Eliseo Gamboa (University of Michigan, 2013) - scientist at the Linac Coherent Light Source.
The work performed on Trident, besides its scientific impact, has also supported the Inertial
Confinement Fusion and Weapons research programs at the Laboratory. It also has
advanced technologies and techniques that hold significant promise for Los Alamos
initiatives, such as MaRIE (the proposed Matter-Radiation Interactions in Extremes
experimental facility), and more generally for important societal applications, such as
defense, global security, advanced accelerators, fusion energy, radiotherapy, and laser
technology.

Specific research contributions based on Trident experiments are listed below.

Relativistic laser plasmas

1. First demonstration of laser-driven quasi-monoenergetic ion beams (Al and C) with
simultaneously high ion-energy and high-efficiency [1I. These are the quasi-
monoenergetic beams with the highest demonstrated energy/nucleon.

2. First demonstration of the laser-driven neutron beam with the highest yield and fluence
to date: > 1010 neutrons within ~ 1 steradian, created in ~ 1ns [23]. This record
performance among all worldwide high-power, high-intensity lasers is now shared with
the PHELIX laser at GSI (Darmstadt).

3. First demonstration of uniform volumetric, isochoric heating (in = 25 ps) with laser-
driven ion beams of solid-matter samples [4-6] sufficiently large for warm-dense matter
studies. This work, done using the laser-driven ion beams in Ref. [1], also lays the
groundwork for a promising capability for dynamic materials research.

First laboratory demonstration of relativistically induced transparency (RIT) [7]

5. First demonstration of coherent, forward laser harmonics by coherent synchrotron

emission [8]
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First demonstration of quasi-monoenergetic laser-driven ion beams (C6+) via the novel
ion soliton mechanism, achieved in the RIT regime [9.10]

First demonstration of laser-driven ion acceleration in the RIT regime [11]

First demonstration of laser-driven ion acceleration (C6+) to > 1 GeV [12], in the RIT
regime

Characterization and development of laser-driven ion acceleration in the RIT regime,
especially the novel breakout afterburner (BOA) mechanism, which enables
simultaneously higher efficiency and higher ion energies [13-16]

First active measurement of relativistic electrons from a sub-um-thick foil laser-target
(171 illuminated by an intense laser (at 2 x 1020 W/cm?2), typical of targets in the RIT
regime. The results show >50% conversion efficiency from the laser to electrons and
multi-MA currents.

First investigation of the generation and focusing of a fast ignition (FI)-relevant laser-
driven proton beam using a cone-shaped target, demonstrating focusing within the
requirements for fast ignition [18l

First demonstration of laser-driven proton energies beyond the previous decade-long
record of 58 MeV from the NOVA petawatt laser, to 67.5 MeV (191 mediated by direct
laser-light-pressure acceleration of electrons, and > 90 MeV [20] with BOA

First observation of quasi-monoenergetic electron bunches from solid-density laser-
driven targets (ultra-thin diamond foils) [21], operating in the RIT regime

First demonstration of ultrahigh-contrast laser pulses in a high-energy, high-power
laser facility with sub-ps pulses, with a scheme based on optical parametric
amplification [22]. This advance enabled access to the RIT regime

Implementation of “dial a contrast” capability to provide laser pulses with controllable
levels of prepulse [23], in order to connect with work at other short-pulse laser facilities
and with work at Trident prior to ultra-high contrast capability

First demonstration of controlled transport and focusing of a laser-driven ion beam
with (miniature) magnetic lenses [24]

First demonstration of a low-energy spread (quasi-monoenergetic) laser-driven ion
beam [25]

Use of a long-pulse laser to clean off surface impurities from a short-pulse laser foil
target [26]

Experimental determination that protons laser-accelerated in the target-normal sheath
acceleration (TNSA) regime come primarily from the rear surface of the foil target [27]
First measurement of beam emittance (laminarity) of TNSA laser-driven proton beams,
demonstrating ultra-low emittance (high-laminarity), which enables focusing and
transport [28]

First demonstration of proton radiography with laser-driven proton beams [29],
demonstrating a ~ 2 um resolution.

Systematic study of high-intensity laser-beam propagation in a coronal plasma above
the critical intensity for ponderomotive self focusing, relevant for fast ignition, and
comparison to dedicated modeling [30l. The study found a clear wavelength dependence,
decreased transmission with increasing plasma density, and an increase in laser-beam

f/number (channeling).

Laser-plasma instabilities (LPI) and basic laser plasmas

23.

24.

Initial implementation of STUD pulses at the Trident Laser and initial experiments
demonstrating reduction in LPI [31.32]

First demonstration of the different properties of plasma waves in the kinetic and fluid
regimes (33
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First direct and comprehensive characterization of the ion acoustic waves driven to high
levels by stimulated Brillouin scattering (SBS), using Thomson scattering measurements
(341, The results showed the kinetic effects of ion heating due to trapping, trapping then
leading to SBS detuning and saturation [35]

First direct observation of SBS detuning by a velocity gradient with Thomson scattering
measurements [36]

First direct observation of plasma waves from the Langmuir-decay instability in laser-
plasmas 371, showing the signature frequency cascade

First demonstration that backward stimulated-Raman backscatter (SRS) in ignition-
relevant plasmas, even with controlled, diffraction-limited (single-hot-spot) laser beams
in homogeneous plasma conditions, has a non-linear onset and saturation [37]
First-demonstration of the non-linear onset of stimulated Brillouin scattering (SBS) in
laser-plasmas with ignition-relevant multi-speckled laser beams and ignition-relevant
long scale-lengths [38], in agreement with analytical theory predictions developed at
LANL

First demonstration of laser-beam deflection by plasma flow [39]

First observation of the electron acoustic wave, and parametric laser scattering from it
[40]

Full characterization of long-scale length plasmas for pioneering experiments on LPI
using a diffraction-limited (single-hot-spot) frequency-tripled probe beam [4142]

First observation of the two-ion decay laser-plasma instability [43]

First observation of spatial localization of electrostatic waves associated with backward
SBS and SRS in a long-scale-length plasma [44], building on earlier observations at LULI
in strong gradients or peaked profiles

First observation of electromagnetic seeding of backward SBS, and first demonstration
that the non-linear saturation level depends on the seed level [45]

Generation of magnetized collisionless shocks by a novel, laser-driven magnetic piston
[46]

Demonstration of collisionless coupling between super-Alfvénic blow-off and ambient
magnetized plasmas [46]

Validation of kinetic plasma modeling of colliding plasmas [48]

First experimental observation of the ion plasma wave [49]

Dynamic Materials
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44,

First measurements with sufficient sensitivity to discriminate between diffusion bonded
and press fit Cu/Be dynamic friction model parameters under shock-driven sliding
conditions (dynamic friction) [50]

Highest sensitivity measurements of surface height variations induced by

grain structure in shocked beryllium under consideration for ICF capsule ablators [511.
First in situ measurements of full field shock planarity at 10s nm sensitivity

using transient imaging displacement interferometry under plate impacts driven by gas
guns and by lasers [52]

Measurements of spall strength and phase transitions in plutonium samples, the second
dynamic plutonium experimental campaign done on a laser facility [53]. These successful
experiments demonstrated the ability for fast turnaround

(four experiments per day) and the use of a containment vessel fully encapsulating the
plutonium sample. The latter eliminates contamination to personnel and equipment,
and allows equipment reuse and reduced costs.

Development and validation of laser-launched flyer plate and confined laser ablation
methods for shock wave loading [54 55]
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Characterization of surface modifications in sapphire induced by long-pulse laser
irradiation [56]

Development of quasi-isentropic compression by ablative laser loading 571
Determination of shock pressures induced in condensed matter by laser ablation [58]
Synthesis of a novel crystalline carbon-cage structure by laser-driven shock wave
loading of a graphite-copper mixture (to about 14+2 GPa and 1000+200 K) [59]

First investigations with simultaneous transient x-ray diffraction and velocity
interferometry diagnostics of the stress at which plastic flow occurs in ns timescales for
single crystals and polycrystalline foils of materials including silicon, copper, beryllium
[60] jron, tantalum, nickel-titanium, nickel aluminide, and ruthenium aluminide. The
results contributed to the development of time-dependent plasticity models and of
simulations with explicit treatment of the motion of dislocations.

Radiation Hydrodynamics
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51.
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53.

Measurement of blast waves showing the transition from stability to Vishniac instability
depending on the adiabatic index of the propagation medium [é1.62]

First experimental study (along with the Vulcan laser) of ionization fronts in the
transonic regime [63]

First evaluation of a foam-buffered target design for spatially uniform ablation of laser-
irradiated plasmas [64]

First study of laser-imprint saturation in foam-buffered targets [65]

Diagnostic development
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First demonstration of a gated x-ray camera with flat response (using a Be-coated
photocathode) [66]

Testing and characterization of the gated x-ray diagnostic (GXD) instrument for NIF at
LLNL and for Orion at AWE [67], as well as cameras from earlier-generations

Routine testing of LANL gated x-ray cameras prior to deployment in most Omega
experimental campaigns for two decades, to ensure high reliability

First single-shot temporal-shape measurement of high energy sub-ps optical pulses [68]
Testing and characterization of a novel high resolution ion wide angle spectrometer (69
Testing and characterization of first spectrometer for HED experiments to measure x-
ray Thomson scattering spatially resolved in 1-dimension [70.71l. This spectrometer has
been used also in experiments at the Omega laser, and is slated as a LANL contribution
in kind to the HIBEF consortium for the HED instrument at the European XFEL.

First demonstration of an x-ray fluorescence scattering imaging as a diagnostic for
laboratory hydrodynamics experiments [72.73]

Demonstration of dynamic phase-contrast imaging using ultrafast x-rays in laser-
shocked materials [74]

Development, testing and utilization of the transient imaging displacement
interferometer (TIDI) diagnostic for dynamic material experiments [751. TIDI is sensitive
to surface displacements of ~ 10 nm with a resolution of ~ 5um and a time-gate of ~
150ps.

Testing, commissioning and utilization of the spatially-discriminating optical streaked
spectrograph (SDOSS), also deployed at the Nova and Omega laser facilities [7¢]
Characterization and cross calibration of x-ray film [77]

First neutron radiograph with a laser-driven neutron-beam source [1]



66. Detection and differentiation of depleted and enriched uranium (~ kg) as well as
plutonium ( = 150g) using laser-driven neutron beams [78], laying the groundwork for a
promising capability for global security

67. First use of nuclear-physics techniques to diagnose laser-driven ion beams [79]

68. First detection of a nuclear resonance (indium at 1.4 eV) with moderated laser-driven
neutron beams 8%, laying the groundwork for promising diagnostics for MaRIE and next
generation neutron sources

69. Extensive calibration of gamma Cherenkov detectors and photomultipliers using the
Trident short-pulse front end.
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